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1 Ideas to Try

Ideas to try on geometry problems:

1. Angle Chasing : Choose a set of angles that defines the diagram and find all possible angles
in terms of them e.g. using cyclic quadrilaterals, similar triangles, common angle formulas.

2. Length Chasing : Find relationships between the lengths of sides e.g. using power of a point,
similar triangles, Menelaus and Ceva, incircle and excircle side lengths, Pythagorean Theorem.

3. Reduce the Problem: Make some observations that reduce the problem to an easier problem
or conjecture something plausible that implies the problem statement.

4. Phantom Points: To prove that a point P has a property, define a new point P ′ in a way
that is easier to work with, then prove the property for P ′ and prove that P = P ′.

5. Combine Patterns: Bring parts of the diagram that are related to each other together e.g.
through parallel lines, intersecting circumcircles, reflections, constructing similar triangles.

6. Spiral Similarity : Look for or construct similar triangles of the form AOB and COD and use
the angle and length relationships from the fact that AOC and BOD are also similar.

7. Transformations: Look for any transformations already present in the diagram and apply
them to other parts of the diagram e.g. homothety, translation, reflection, spiral similarity.

8. Constructing Points: An introduced point P generally is useful if it has two “good” properties
i.e. unites two conditions in the problem. Since a point P can always be selected to have a
single property, introducing a point is only useful when it unites two conditions. However,
most points introduced to solve problems are likely motivated by an approach listed above.

9. Forming Conjectures: Many difficult problems will require a lemma which may not be obvious
from the problem statement or initial deductions. Two ways of forming conjectures are:

(a) looking for patterns in precisely drawn diagrams and

(b) thinking about what would be convenient and easy to work with if it were true

It is important to keep both of these ideas in mind when looking for a key observation.
Observations made only from the diagram may not be feasible to prove, useless to the problem
or false. Conjectures that would be convenient may be obviously disproved by a diagram. It
is important to conjecture something which seems clearly true based on one good (or several)
diagrams and is both feasible to prove and useful in the problem.
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10. What is Difficult? : A diagram will likely have parts that are difficult and parts that are easier
to work with. It is often useful to identify what parts are difficult to work with and try to
figure out possible ways to handle them e.g. redefining points using phantom points.

11. Trigonometry : Powerful in situations when an angle cannot be expressed simply in terms of
other angles e.g. angles involving medians; often works best when you have in mind exactly
what you want to prove e.g. a ratio condition.

12. Algebraic Methods: Complex numbers, vectors, coordinates and barycentric coordinates.

2 Examples

The examples below are intended to be representative of the types of problems that might appear
on the IMO. The solutions given are outlines intended to emphasize motivation. We do not deal
with configuration issues and special cases in the solutions presented.

Example 1. (2004 G1) Let ABC be an acute-angled triangle with AB 6= AC. The circle with
diameter BC intersects the sides AB and AC at M and N respectively. Denote by O the midpoint
of the side BC. The bisectors of the angles ∠BAC and ∠MON intersect at R. Prove that the
circumcircles of the triangles BMR and CNR have a common point lying on the side BC.

Solution. The initial difficulty with this problem is that defining R as the intersection of two
unrelated angle bisectors does not give much information. We search for a better way to describe
R. Since O is the center of the circle through BMNC, it follows that OM = ON and the bisector
of ∠MON is the perpendicular bisector of MN . Now the bisector of ∠BAC and perpendicular
bisector of BC meet at the midpoint of arc B̂C. Therefore AMRN is cyclic. If the circumcircles
meet at P , angle chasing gives that B, P and C are collinear.

The next example involves reducing the problem statement and parts of the diagram we need
to consider as well as introducing phantom points.

Example 2. (1995 G1) Let A,B,C,D be four distinct points on a line, in that order. The circles
with diameters AC and BD intersect at X and Y . The line XY meets BC at Z. Let P be a point
on the line XY other than Z. The line CP intersects the circle with diameter AC at C and M , and
the line BP intersects the circle with diameter BD at B and N . Prove that the lines AM,DN,XY
are concurrent.

Solution. The diagram is cluttered and we try to reduce the parts of the diagrams we need to
consider. The line AM is simply the perpendicular to CP at M and DN is simply the perpendicular
to BP at N . We no longer have to think about A and D in defining these lines. Now we observe
that since ZP is perpendicular to BC, these lines create cyclic quadrilaterals. It seems natural to
introduce their intersections with ZP . Let the perpendiculars at M and N to CP and BP intersect
ZP at Q and R. We now have that ZXMC and ZY NB are cyclic. Power of a point yields that
PQ · PZ = PM · PC = PX · PY = PN · PB = PR · PZ. Therefore Q = R and we are done.

One important note with eliminating parts of the daigram is that you may lose information
or those parts may motivate the solution. It is important to consider the problem both with and
without unnecessary parts of the diagram. The next problem exemplifies the method of completing
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a transformation already present in the diagram. In an trapezoid, there is an internal and an
external homothety mapping the two parallel sides to one another. In this problem, we “complete”
the transformation by filling in the missing point-transform pairs.

Example 3. (2006 G2) Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L
lie on the line segments AB and CD, respectively, so that AK

KB = DL
LC . Suppose that there are points

P and Q on the line segment KL satisfying ∠APB = ∠BCD and ∠CQD = ∠ABC. Prove that
the points P , Q, B and C are concyclic.

Solution. Since ABCD is a trapezoid, there is a homothety sending AB to CD as well as one
sending AB to DC. We note that the homothety sending AB to DC also sends K to L. Now we
complete this homothety in the diagram. Let DA and CB intersect at T and let the homothety
with center T bring P to P ′. We have that K,P,Q,L and P ′ are collinear and PB‖P ′C. Since
∠DQC + ∠APB = ∠DQC + ∠DP ′C = 180◦, we have DQCP ′ is cyclic. Therefore ∠QPB =
∠QP ′C = ∠QDC = 180◦ − ∠DQC − ∠QCD = ∠QCB. The conclusion follows.

The next problem really illustrates the power of looking for similar triangles and stopping to
think about what is already in the diagram before trying to introduce new points.

Example 4. (2005 G3) Let ABCD be a parallelogram. A variable line g through the vertex A
intersects the rays BC and DC at the points X and Y , respectively. Let K and L be the A-
excenters of the triangles ABX and ADY . Show that ∠KCL is independent of the line g.

Solution. Angle chasing gives that ∠ALD = ∠KAB = ∠BAX/2 and ∠DAL = ∠BKA =
∠ADY /2. Therefore triangles ADL and KBA are similar which implies that AB/BK = DL/AD
and therefore DL/CD = BC/BK. Since ∠CDL = ∠CBK = 90◦−∠ADC/2, it follows that trian-
gles CDL and KBC are siimilar. Now it follows that ∠KCL = 360◦−∠BCD−∠DCL−∠BCK =
180◦ + ∠CDL− ∠BCD = 180◦ − ∠BCD/2 which is independent of g.

The next example illustrates the power of redefining a point that is difficult to work with. Here,
working with the problem defined from an easier point of view reduces it to angle chasing.

Example 5. (2002 G3) The circle S has centre O, and BC is a diameter of S. Let A be a point of
S such that ∠AOB < 120◦. Let D be the midpoint of the arc AB which does not contain C. The
line through O parallel to DA meets the line AC at I. The perpendicular bisector of OA meets S
at E and at F . Prove that I is the incentre of the triangle CEF.

Solution. We first make several preliminary observations. Since EF is the perpendicular bisector of
OA, we have that AE = OE = OA and therefore AOE is equilateral. Similarly, we have that AOF
is equilateral which implies that ∠EOF = 120◦ and ∠ECF = 60◦. These results also imply that A
is the midpoint of arc ÊF and CA bisects ∠ECF . After these preliminary observations, it becomes
difficult to work with the point I as defined. The key here is to redefine I to be easier to work
with. We now define I ′ to be the incenter of CEF with the goal of showing that ∠DAO = ∠AOI ′

since this would imply that OI ′‖AD and therefore I = I ′. At this point, the task becomes far
more feasible than before and reduces to angle chasing. First we note that ∠EOF = 120◦ and
∠EI ′F = 90◦ + ∠ECF/2 = 120◦ which implies that EI ′OF is cyclic. Now we carry out our
angle chasing methodically, attempting to eliminate points from consideration as we go. Note that
∠DAO = 90◦ −∠AOD/2 = 90◦ −∠ACB/2 = 45◦ + ∠ABC/2 = 45◦ + ∠AFC/2, which is enough
to eliminate D and B. Now note that ∠AOI ′ = ∠AOE+∠EOI ′ = 60◦+∠EFI = 60◦+∠EFC/2.
Since ∠AFC − ∠EFC = 30◦, we have that ∠DAO = ∠AOI ′, as desired.
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The next example has multiple elements that are difficult to work with. Here, we follow cues
presented in the diagram and obtain useful constructions (introduced points uniting more than one
condition) and reduce the problem to feasible ratio calculations.

Example 6. (1996 G3) Let O be the circumcenter and H the orthocenter of an acute-angled triangle
ABC such that BC > CA. Let F be the foot of the altitude CH of triangle ABC. The perpendicular
to the line OF at the point F intersects the line AC at P . Prove that ∠FHP = ∠BAC.

Solution. If the problem statement is true, then ∠CHP = 180◦ − ∠BAC. Based on this angle
relationship, intersecting HP with AB creates a cyclic quadrilateral. We reformulate the problem
by defining P as the point on AC satisfying ∠FHP = ∠BAC introduce this intersection point and
call it D. Our goal is now to show ∠PFO = 90◦ and the two definitions are therefore equivalent.
Since CHAD is cyclic, we have that ∠CDA = 180◦ − ∠CHA = ∠CBA. Since the line OF is
difficult to deal with and angles around it have no simple formula, we try to reduce the problem
to a condition relating something more directly related to P than OF . We have now that DCB is
isosceles and F is the midpoint of BD. If M is the midpoint of AB, then we now note that there
is a homothety sending MF to AD with center B and ratio 2. Let E be the image of O under this
homothety. Note that AE = 2OM = CH. It now suffices to show that ∠EDA = 90◦ − ∠PFH.
We now try to reduce this angle condition to length conditions which will be easier to deal with
since many angles in the diagram cannot be expressed simply. If G is the intersection of FP with
the line through C perpendicular to CH. Since ∠GCF = ∠EAD = 90◦, it suffices to show that
GCF and EAD are similar, which is equivalent to showing that

CH

AD
=
EA

AD
=
GC

CF
=
CP

PA
· AF
CF

Now we resort to a ratio identity for cyclic quadrilaterals. The ratio CP/PA is the ratio of the
areas of triangles DCH and DAH. Therefore since CHAD is cyclic, we have that

CP

PA
=

sin∠DCH · CD · CH
sin∠DAH ·AD ·AH

=
CB · CH
AD ·AH

Therefore the desired result reduces to proving that AH/AF = BC/CF which follows from the
fact that AHF and CBF are similar. This completes the proof.

The next example demonstrates the effectiveness of persisting with a particular approach before
moving on and introducing new points into the diagram.

Example 7. (2008 G4) In an acute triangle ABC segments BE and CF are altitudes. Two circles
passing through the point A anf F and tangent to the line BC at the points P and Q so that B lies
between C and Q. Prove that lines PE and QF intersect on the circumcircle of triangle AEF .

Solution. This problem is straightforward with power of a point and does not require introducing
any new points other than the orthocenter H of ABC and foot of the perpendicular from A to BC,
which are already implicitly present. Relating our goal to angles already in the diagram reduces
the problem to showing that ∠QFB = ∠PEC. By power of a point BQ2 = BP 2 = BF · BA and
triangles QFB and AQB are similar. Therefore it suffices to show that ∠PEC = ∠AQC which is
equivalent to AQPE being cyclic. By power of a point we now have

CP · CQ = BC2 −BP 2 = BC2 −BF ·BA = BC2 −BD ·BC = CD · CB = CE · CA

Therefore AQPE is cyclic and we are done.
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This solution hides the experimenting involved with power of a point needed to come up with
it. Although it is tempting to try introducing new points, here just persisting with what is already
present solves the problem. The key idea in the next example is to find an easier condition to work
with and to combine related ideas.

Example 8. (2006 G4) Let ABC be a triangle such that ÂCB < B̂AC < π
2 . Let D be a point of

[AC] such that BD = BA. The incircle of ABC touches [AB] at K and [AC] at L. Let J be the
center of the incircle of BCD. Prove that (KL) intersects [AJ ] at its middle.

Solution. Angle chasing gives that ∠ALK = 90◦ − ∠A/2 and ∠CDJ = 90◦ − ∠A/2. It makes
sense to try to relate these two equal angles in the diagram by trying to move one into a position
so that it relates to the other. Furthermore, working on the segment AJ seems difficult as we
do not know angles or lengths related to this line. Instead, we try to work on AC, where we
can make use of incircle tangent length formulas. We do this by reducing the problem using non-
perpendicular projections in the direction of KL onto AC. We find that this reduces the problem
to a seemingly feasible alternative and also relates the equal angles originally found. Specifically,
let P be the intersection of the line perpendicular to KL through J with AC. It now suffices
to show that L is the midpoint of AP . Since ∠PDJ = ∠ALK = ∠DPJ , we have that PDJ
is isosceles and if M is the midpoint of DP , then M is also the foot of the perpendicular from
J onto AC. Applying incircle tangent length formulas gives that AL = 1

2(AB + AC − BC) and
AP = AD + 2AM = AD + (BD + DC − BC) = AB + AC − BC. This implies that L is the
midpoint of AP and the desired result follows.

The next example has a key lemma not at all obvious from the problem statement. We try to
motivate how to find this observation.

Example 9. (2005 G5) Let 4ABC be an acute-angled triangle with AB 6= AC. Let H be the
orthocenter of triangle ABC, and let M be the midpoint of the side BC. Let D be a point on the
side AB and E a point on the side AC such that AE = AD and the points D, H, E are on the
same line. Prove that the line HM is perpendicular to the common chord of the circumscribed
circles of triangle 4ABC and triangle 4ADE.

Solution. It is a known fact that the line HM passes through P , the point diametrically opposite
to A on the circumcircle Γ of ABC. Based on this, it would be convenient if HM passed through
the second intersection Q of Γ and the circumcircle of ADE. If this were true, then AQ and the line
PMHQ would be perpendicular since AP is a diameter of the circumcircle of ABC. At this point,
it is not a bad idea to draw one or two precise diagrams and see if our claim is supported. We find
that it is and decide to focus on this claim. Proving the claim directly does not seem easy since it
is hard to work with the second intersection point while actually using the fact that it lies on both
circles. We look for a conjecture easier to prove that arises from our claim. If the claim is true,
then PMHQ must also pass through the point R diametrically opposite to A on the circumcircle
of ADE. Proving this seems more feasible, since it does not involve the second intersection and we
work with it first. Treating this new claim as its own subproblem yields the following solution.

Let U and V be the feet of the perpendiculars from B and C to AC and AB. Angle chasing
yields that the line DHE is the internal bisector of the angle formed by lines BU and CV . It
also holds that triangles UHC and V HB are similar. Therefore UD/DB = V E/EC = t. If the
perpendicular to AB at D intersects HP at R1, then since UHPB is a trapezoid it follows that
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HR1/R1P = t. Similarly if the perpendicular to AC at E intersects HP at R2, then HR2/R2P = t
and R1 = R2 = R. This proves the claim.

Now to complete the solution, take the projection Q′ of A onto line PMHR. Since AR and
AP are diameters of the circumcircle of ADE and Γ, it follows that Q′ lies on both circles and thus
Q′ = Q. Now it follows that the line PMHR is perpendicular to AQ, as desired.

3 Problems

In this section, a variety of IMO Shortlist problems are included. They are intended to be sorted
roughly in increasing order of difficulty.

A1. (2003 G1) Let ABCD be a cyclic quadrilateral. Let P , Q, R be the feet of the perpendiculars
from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the
bisectors of ∠ABC and ∠ADC are concurrent with AC.

A2. (2002 G1) Let B be a point on a circle S1, and let A be a point distinct from B on the
tangent at B to S1. Let C be a point not on S1 such that the line segment AC meets S1 at
two distinct points. Let S2 be the circle touching AC at C and touching S1 at a point D on
the opposite side of AC from B. Prove that the circumcentre of triangle BCD lies on the
circumcircle of triangle ABC.

A3. (1998 G1) A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular
bisectors of the sides AB and CD meet at a unique point P inside ABCD. Prove that the
quadrilateral ABCD is cyclic if and only if triangles ABP and CDP have equal areas.

A4. (2001 G1) Let A1 be the center of the square inscribed in acute triangle ABC with two vertices
of the square on side BC. Thus one of the two remaining vertices of the square is on side
AB and the other is on AC. Points B1, C1 are defined in a similar way for inscribed squares
with two vertices on sides AC and AB, respectively. Prove that lines AA1, BB1, CC1 are
concurrent.

A5. (2000 G1) Two circles G1 and G2 intersect at two points M and N . Let AB be the line
tangent to these circles at A and B, respectively, so that M lies closer to AB than N . Let
CD be the line parallel to AB and passing through the point M , with C on G1 and D on
G2. Lines AC and BD meet at E; lines AN and CD meet at P ; lines BN and CD meet at
Q. Show that EP = EQ.

A6. (2003 G2) Given three fixed pairwisely distinct points A, B, C lying on one straight line in
this order. Let G be a circle passing through A and C whose center does not lie on the line
AC. The tangents to G at A and C intersect each other at a point P . The segment PB
meets the circle G at Q. Show that the point of intersection of the angle bisector of the angle
AQC with the line AC does not depend on the choice of the circle G.

A7. (2008 G1) Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered
at the midpoint of BC and passing through H intersects the sideline BC at points A1 and
A2. Similarly, define the points B1, B2, C1 and C2. Prove that the six points A1, A2, B1,
B2, C1 and C2 are concyclic.
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A8. (2001 G2) Consider an acute-angled triangle ABC. Let P be the foot of the altitude of
triangle ABC issuing from the vertex A, and let O be the circumcenter of triangle ABC.
Assume that ∠C ≥ ∠B + 30◦. Prove that ∠A+ ∠COP < 90◦.

A9. (2005 G2) Six points are chosen on the sides of an equilateral triangle ABC: A1, A2 on
BC, B1, B2 on CA and C1, C2 on AB, such that they are the vertices of a convex hexagon
A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2, B1C2 and C1A2 are
concurrent.

B1. (2006 G3) Consider a convex pentagon ABCDE such that

∠BAC = ∠CAD = ∠DAE , ∠ABC = ∠ACD = ∠ADE

Let P be the point of intersection of the lines BD and CE. Prove that the line AP passes
through the midpoint of the side CD.

B2. (2009 G2) Let ABC be a triangle with circumcentre O. The points P and Q are interior
points of the sides CA and AB respectively. Let K,L and M be the midpoints of the
segments BP,CQ and PQ. respectively, and let Γ be the circle passing through K,L and M .
Suppose that the line PQ is tangent to the circle Γ. Prove that OP = OQ.

B3. (2012 G3) In an acute triangle ABC the points D,E and F are the feet of the altitudes
through A,B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2
respectively; the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively.
Prove that I1I2 and O1O2 are parallel.

B4. (2007 G3) The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between
the parallel lines BC and AD such that ∠AQD = ∠CQB, and line CD separates points P
and Q. Prove that ∠BQP = ∠DAQ.

B5. (2000 G3) Let O be the circumcenter and H the orthocenter of an acute triangle ABC. Show
that there exist points D, E, and F on sides BC, CA, and AB respectively such that

OD +DH = OE + EH = OF + FH

and the lines AD, BE, and CF are concurrent.

B6. (2009 G4) Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and
the lines AD and BC meet at F . The midpoints of AB and CD are G and H, respectively.
Show that EF is tangent at E to the circle through the points E, G and H.

B7. (1998 G6) Let ABCDEF be a convex hexagon such that ∠B + ∠D + ∠F = 360◦ and

AB

BC
· CD
DE
· EF
FA

= 1.

Prove that
BC

CA
· AE
EF
· FD
DB

= 1.
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B8. (2009 G3) Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the
points Z and Y , respectively. Let G be the point where the lines BY and CZ meet, and let
R and S be points such that the two quadrilaterals BCY R and BCSZ are parallelogram.
Prove that GR = GS.

B9. (2003 G5) Let ABC be an isosceles triangle with AC = BC, whose incentre is I. Let P be
a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines
through P parallel to CA and CB meet AB at D and E, respectively. The line through P
parallel to AB meets CA and CB at F and G, respectively. Prove that the lines DF and
EG intersect on the circumcircle of the triangle ABC.

B10. (2005 G4) Let ABCD be a fixed convex quadrilateral with BC = DA and BC not parallel
with DA. Let two variable points E and F lie of the sides BC and DA, respectively and
satisfy BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q, the
lines EF and AC meet at R. Prove that the circumcircles of the triangles PQR, as E and F
vary, have a common point other than P .

B11. (1995 G8) Suppose that ABCD is a cyclic quadrilateral. Let E = AC∩BD and F = AB∩CD.
Denote by H1 and H2 the orthocenters of triangles EAD and EBC, respectively. Prove that
the points F , H1, H2 are collinear.

B12. (2007 G4) Consider five points A, B, C, D and E such that ABCD is a parallelogram
and BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that `
intersects the interior of the segment DC at F and intersects line BC at G. Suppose also
that EF = EG = EC. Prove that ` is the bisector of angle DAB.

B13. (2011 G4) Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC
and let C0 be the midpoint of AB. Let D be the foot of the altitude from A and let G be
the centroid of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the
circle Ω at a point X 6= A. Prove that the points D,G and X are collinear.

B14. (2010 G5) Let ABCDE be a convex pentagon such that BC ‖ AE, AB = BC + AE, and
∠ABC = ∠CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle
BCD. Given that ∠DMO = 90◦, prove that 2∠BDA = ∠CDE.

C1. (1998 G5) Let ABC be a triangle, H its orthocenter, O its circumcenter, and R its circum-
radius. Let D be the reflection of the point A across the line BC, let E be the reflection of
the point B across the line CA, and let F be the reflection of the point C across the line AB.
Prove that the points D, E and F are collinear if and only if OH = 2R.

C2. (1998 G8) Let ABC be a triangle such that ∠A = 90◦ and ∠B < ∠C. The tangent at A to
the circumcircle ω of triangle ABC meets the line BC at D. Let E be the reflection of A in
the line BC, let X be the foot of the perpendicular from A to BE, and let Y be the midpoint
of the segment AX. Let the line BY intersect the circle ω again at Z. Prove that the line
BD is tangent to the circumcircle of triangle ADZ.

C3. (1999 G6) Two circles Ω1 and Ω2 touch internally the circle Ω in M and N and the center of
Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2 intersects Ω in A and B. MA and
MB intersects Ω1 in C and D. Prove that Ω2 is tangent to CD.
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C4. (2005 G6) Let ABC be a triangle, and M the midpoint of its side BC. Let γ be the incircle
of triangle ABC. The median AM of triangle ABC intersects the incircle γ at two points K
and L. Let the lines passing through K and L, parallel to BC, intersect the incircle γ again
in two points X and Y . Let the lines AX and AY intersect BC again at the points P and
Q. Prove that BP = CQ.

C5. (2004 G7) For a given triangle ABC, let X be a variable point on the line BC such that
C lies between B and X and the incircles of the triangles ABX and ACX intersect at two
distinct points P and Q. Prove that the line PQ passes through a point independent of X.

C6. (2009 G6) Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel
to CD) intersect at point P . Points O1 and O2 are circumcenters and points H1 and H2 are
orthocenters of triangles ABP and CDP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD,
the perpendicular from E2 on AB and the lines H1H2 are concurrent.

C7. (1996 G5) Let ABCDEF be a convex hexagon such that AB is parallel to DE, BC is
parallel to EF , and CD is parallel to FA. Let RA, RC , RE denote the circumradii of triangles
FAB,BCD,DEF , respectively, and let P denote the perimeter of the hexagon. Prove that

RA +RC +RE ≥
P

2
.

C8. (2011 G3) Let ABCD be a convex quadrilateral whose sides AD and BC are not parallel.
Suppose that the circles with diameters AB and CD meet at points E and F inside the
quadrilateral. Let ωE be the circle through the feet of the perpendiculars from E to the lines
AB,BC and CD. Let ωF be the circle through the feet of the perpendiculars from F to the
lines CD,DA and AB. Prove that the midpoint of the segment EF lies on the line through
the two intersections of ωE and ωF .

C9. (2008 G7) Let ABCD be a convex quadrilateral with BA different from BC. Denote the
incircles of triangles ABC and ADC by k1 and k2 respectively. Suppose that there exists a
circle k tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to
AD and CD. Prove that the common external tangents to k1 and k2 intersect on k.

C10. (2006 G9) Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle ABC
respectively. The circumcircles of triangles AB1C1, BC1A1, CA1B1 intersect the circumcircle
of triangle ABC again at points A2, B2, C2 respectively (A2 6= A,B2 6= B,C2 6= C). Points
A3, B3, C3 are symmetric to A1, B1, C1 with respect to the midpoints of the sides BC, CA,
AB respectively. Prove that the triangles A2B2C2 and A3B3C3 are similar.

C11. (2012 G6) Let ABC be a triangle with circumcenter O and incenter I. The points D,E and F
on the sides BC,CA and AB respectively are such that BD+BF = CA and CD+CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

C12. (2007 G8) Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle of
triangle CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles
APD and BPC at points K and L, respectively. Let lines AC and BD meet at E, and let
lines AK and BL meet at F . Prove that points E, I, and F are collinear.
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C13. (2009 G8) Let ABCD be a circumscribed quadrilateral. Let g be a line through A which
meets the segment BC in M and the line CD in N . Denote by I1, I2 and I3 the incenters of
4ABM , 4MNC and 4NDA, respectively. Prove that the orthocenter of 4I1I2I3 lies on g.

C14. (2004 G8) Given a cyclic quadrilateral ABCD, let M be the midpoint of the side CD, and
let N be a point on the circumcircle of triangle ABM . Assume that the point N is different
from the point M and satisfies AN

BN = AM
BM . Prove that the points E, F , N are collinear, where

E = AC ∩BD and F = BC ∩DA.

4 Useful Geometry Facts

Cyclic Quadrilaterals

1. A convex quadrilateral ABCD is cyclic if and only if either:

(a) ∠ADB = ∠ACB

(b) ∠DAB + ∠BCD = 180◦

2. The above two conditions can be restated as a single condition in terms of directed angles:
Four points A,B,C and D are concyclic if and only if ]ABC = ]ADC.

3. (Power of a Point) Let ABCD be a convex quadrilateral such that AB and CD intersect at
P and diagonals AC and BD intersect at Q. ABCD is cyclic if and only if either:

(a) AQ ·QC = BQ ·QD or equivalently QAD and QBC are similar

(b) PA · PB = PC · PD or equivalently PAD and PCB are similar

4. Given a triangle ABC, the intersections of the internal and external bisectors of angle ∠BAC
with the perpendicular bisector of BC both lie on the circumcircle of ABC.

5. (Ptolemy’s Theorem) A quadrilateral ABCD is cyclic if and only if

AB · CD +AD ·BC = AC ·BD

6. Let ABCD be a cyclic quadrilateral such that AB and CD intersect at P and diagonals AC
and BD intersect at Q. Then:

BQ

QD
=
AB ·BC
AD ·DC

and
PB

PA
=
BC ·BD
AC ·AD

7. (Polars) Let ABCD be a cyclic quadrilateral inscribed in circle Γ such that AB and CD
intersect at P and diagonals AC and BD intersect at Q. If the tangents drawn from P to Γ
touch Γ at R and S, then R, Q and S are collinear.
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Circles

1. (Power of a Point) Given a circle Γ with center O and a point P then for any line ` through
P that intersects Γ at A and B, the value PA ·PB is constant as ` varies and is equal to the
power of the point P with respect to Γ.

(a) The power of P is equal to r2 − PO2 if P is inside Γ and PO2 − r2 otherwise.

(b) If PA is tangent to Γ, then the power of P is equal to PA2.

2. (Radical Axis) Given two circles Γ1 and Γ2, the set of all points P with equal powers with
respect to Γ1 and Γ2 is a line which is the radical axis of the two circles.

(a) The radical axis is perpendicular to the line through the centers of Γ1 and Γ2.

(b) If Γ1 and Γ2 intersect at A and B, then the radical axis passes through A and B.

(c) If AB is a common tangent with A on Γ1 and B on Γ2, then the radical axis passes
through the midpoint of AB.

3. (Radical Center) Given three circles Γ1,Γ2 and Γ3, the three radical axes between pairs of
the three circles meet at a common point P which is the radical center of the circles.

4. A point P is a circle of radius zero and the radical axis of P and a circle Γ is the line through
the midpoints of PA and PB where A and B are points on Γ such that PA and PB are
tangent to Γ.

5. (Monge’s Theorem) Given three circles Γ1,Γ2 and Γ3. If P , Q and R are the external centers
of homothety between pairs of the three circles, then P , Q and R are collinear. If P and Q
are internal centers of homothety, then P , Q and R are also collinear.

6. Two circles Γ1 and Γ2 intersect at R and have centers O1 and O2. If P and Q are the internal
and external centers of homothety between the two circles, then ∠PRQ = 90◦. The lines RP
and RQ are the internal and external bisectors of ∠O1RO2.

Triangle Geometry

1. (Angle Bisector Theorem) Let ABC be a given triangle and let P and Q be the intersections
of the internal and external bisectors of angle ∠ABC with line AC. Then

AB

BC
=
AP

PC
=
AQ

QC

2. Angles around the centers of a triangle ABC:

(a) If I is the incenter of ABC then ∠BIC = 90◦ + a
2 , ∠IBC = b

2 and ∠ICB = c
2 .

(b) If H is the orthocenter of ABC then ∠BHC = 180◦−a, ∠HBC = 90◦−c and ∠HCB =
90◦ − b.

(c) If O is the circumcenter of ABC then ∠BOC = 2a and ∠OBC = ∠OCB = 90◦ − a.

(d) If Ia is the A-excenter of ABC then ∠AIaB = c
2 , ∠AIaC = b

2 and ∠BIaC = 90◦ − a
2 .
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3. Pedal triangles of the centers of a triangle ABC:

(a) If DEF is the triangle formed by projecting the incenter I onto sides BC, AC and AB,
then I is the circumcenter of DEF and ∠EDF = 90◦ − a

2 .

(b) If DEF is the triangle formed by projecting the orthocenter H onto sides BC, AC and
AB, then H is the incenter of DEF and ∠EDF = 180◦ − 2a.

(c) The medial triangle of ABC is the pedal triangle of the circumcenter O of ABC and O
is its orthocenter.

4. Alternate methods of defining the orthocenter and circumcenter:

(a) O is the circumcenter of ABC if and only if ]AOB = 2]ACB and OA = OB.

(b) H is the orthocenter of ABC if and only if H lies on the altitude from A and satisfies
that ]BHC = 180◦ − ]BAC.

5. Facts related to the orthocenter H of a triangle ABC with circumcircle Γ:

(a) If O is the circumcenter of ABC, then ∠BAH = ∠CAO.

(b) If D is the point diametrically opposite to A on Γ and M is the midpoint of BC, then
M is also the midpoint of HD.

(c) If AH,BH and CH intersect Γ again at D,E and F , then there is a homothety centered
at H sending the pedal triangle of H to DEF with ratio 2.

(d) If D and E are the intersections of AH with BC and Γ, respectively, then D is the
midpoint of HE.

(e) H lies on the three circles formed by reflecting Γ about AB, BC and AC.

(f) If M is the midpoint of BC then AH = 2 ·OM .

(g) If BH and CH intersect AC and AB at D and E, and M is the midpoint of BC, then
M is the center of the circle through B,D,E and C, and MD and ME are tangent to
the circumcircle of ADE.

6. Facts related to the incenter I and excenters Ia, Ib, Ic of ABC with circumcircle Γ:

(a) If the incircle of ABC is tangent to AB and AC at points D and E and s is the
semiperimeter of ABC then

AD = AE =
AB +AC −BC

2
= s−BC

(b) If AI intersects Γ at D then DB = DI = DC, D is the midpoint of IIa, and IIa is a
diameter of the circle with center D which passes through B and C.

(c) If AI,BI and CI intersect Γ at D,E and F , then IaIbIc, DEF and the pedal triangle
of I are similar and have parallel sides.

(d) I is the orthocenter of IaIbIc and Γ is the nine-point circle of IaIbIc.

(e) If BI and CI intersect Γ again at D and E, then I is the reflection of A in line DE
and if M is the intersection of the external bisector of ∠BAC with Γ, then DMEI is a
parallelogram.
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(f) If the incircle and A-excircle of ABC are tangent to BC at D and E, BD = CE.

(g) If the A-excircle of ABC is tangent to AB, AC and BC at D, E and F then AB+BF =
AC + CF = AD = AE = s where s is the semi-perimeter of ABC.

(h) If M is the midpoint of arc BAC of Γ, then M is the midpoint of IbIc and the center of
the circle through Ib, Ic, B and C.

7. (Nine-Point Circle) Given a triangle ABC, let Γ denote the circle passing through the mid-
points of the sides of ABC. If H is the orthocenter of ABC, then Γ passes through the
midpoints of AH,BH and CH and the projections of H onto the sides of ABC.

8. (Feuerbach’s Theorem) The nine-point circle is tangent to the incircle and excircles.

9. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle ABC,
then G lies on segment OH with HG = 2 ·OG.

10. (Symmedian) Given a triangle ABC such that M is the midpoint of BC, the symmedian
from A is the line that is the reflection of AM in the bisector of angle ∠BAC.

(a) If the tangents to the circumcircle Γ of ABC at B and C intersect at N , then N lies on
the symmedian from A and ∠BAM = ∠CAN .

(b) If the symmedian from A intersects Γ at D, then AB/BD = AC/CD.

11. If the median from A in a triangle ABC intersects the circumcircle Γ of ABC at D, then
AB ·BD = AC · CD.

12. (Euler’s Formula) Let O, I and Ia be the circumcenter, incenter and A-excenter of a triangle
ABC with circumradius R, inradius r and A-exradius ra. Then:

(a) OI =
√
R(R− 2r).

(b) OIa =
√
R(R+ 2ra).

13. (Poncelet’s Porism) Let Γ and ω be two circles with centers O and I and radii R and r,
respectively, such that OI =

√
R(R− 2r). Let A,B and C be any three points on Γ such

that lines AB and AC are tangent to ω. Then line BC is also tangent to ω.

14. (Apollonius Circle) Let ABC be a given triangle and let P be a point such that AB/BC =
AP/PC. If the internal and external bisectors of angle ∠ABC meet line AC at Q and R,
then P lies on the circle with diameter QR.

15. Let ABC be a given triangle with incircle ω and A-excircle ωa. If ω and ωa are tangent to
BC at M and N , then AN passes through the point diametrically opposite to M on ω and
AM passes through the point diametrically opposite to N on ωa.

16. Let ABC be a triangle with incircle ω which is tangent to BC, AC and AB at D, E and F .
Let M be the midpoint of BC. The perpendicular to BC at D, the median AM and the line
EF are concurrent.

17. Let ABC be a triangle with incenter I and incircle ω which is tangent to BC, AC and AB
at D, E and F . The angle bisector CI intersects FE at a point T on the line adjoining the
midpoints of AB and BC. It also holds that BFTID is cyclic and ∠BTC = 90◦.
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Collinearity and Concurrency

1. (Ceva’s Theorem) Let ABC be a triangle and D, E and F be on the lines BC, AC and AB
such that an even number are on the extensions of the sides (zero or two). Then AD, BE
and CF are concurrent if and only if

AF

FB
· BD
DC
· CE
EA

= 1

2. (Menelaus’ Theorem) Let ABC be a triangle and D, E and F be on the lines BC, AC and
AB such that an odd number are on the extensions of the sides (one or three). Then D, E
and F are collinear if and only if

AF

FB
· BD
DC
· CE
EA

= 1

3. (Trig Ceva) Let ABC be a triangle and D, E and F be on the lines BC, AC and AB such
that an even number are on the extensions of the sides (zero or two). Then AD, BE and CF
are concurrent if and only if

sin(∠ABE)

sin(∠CBE)
· sin(∠BCF )

sin(∠ACF )
· sin(∠CAD)

sin(∠BAD)
= 1

4. (Casey’s Theorem) If A1, B1 and C1 are points on the sides BC,AC and AB of a triangle
ABC, then the perpendiculars to their respective sides at these three points are concurrent
if and only if BA2

1 − CA2
1 + CB2

1 −AB2
1 +AC2

1 −BC2
1 = 0.

5. (Pascal’s Theorem) If A,B,C,D,E, F are points on a circle then the intersections of the pairs
of lines AB and DE, BC and EF , CD and FA lie on a line.

6. (Pappus’ Theorem) If A,C and E lie on one line `1 and B,D and F lie on a line `2, then the
intersections of the pairs of lines AB and DE, BC and EF , CD and FA lie on a line.

7. (Brianchon’s Theorem) If ABCDEF is a hexagon with an inscribed circle then AD, BE and
CF are concurrent.

8. (Desargues Theorem) Let ABC and XY Z be triangles. Let D,E, F be the intersections of
the pairs of lines AB and XY , BC and Y Z, AC and XZ. Then D, E and F are collinear if
and only if AX, BY and CZ are concurrent.

9. Pascal’s theorem is true when points are not necessarily distinct and many of its applications
concern tangent lines when some of the six points are equal.

Trigonometry

1. (Sine Law) Given a triangle ABC with circumradius R

BC

sin∠A
=

AC

sin∠B
=

AB

sin∠C
= 2R
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2. (Cosine Law) Given a triangle ABC

BC2 = AB2 +AC2 − 2 ·AB ·AC · cos∠A

3. (Pythagorean Theorem) If ABC is a triangle, then ∠ABC = 90◦ if and only if

AB2 +BC2 = AC2

4. Given a triangle ABC and a point D on line BC, then

sin∠BAD
sin∠CAD

=
BD ·AC
CD ·AB

5. (Stewart’s Theorem) Let a, b, c be the side lengths of a triangle ABC and let d be the length
of a cevian from A to BC that divides BC into segments of lengths m and n with m closer
to B. Then

b2m+ c2n = a(d2 +mn)

Miscellaneous Synthetic Facts

1. (Spiral Similarity) Let OAB and OCD be directly similar triangles. Then OAC and OBD
are also directly similar triangles.

2. The unique center of spiral similarity sending AB to CD is the second intersection of the
circumcircles of QAB and QCD where AC and BD intersect at Q.

3. Lines AB and CD are perpendicular if and only if AC2 −AD2 = BC2 −BD2.

4. (Apollonius Circle) Given two points A and B and a fixed r > 0, then the locus of points Q
such that AQ/BQ = r is a circle Γ with center at the midpoint of Q1Q2 where Q1 and Q2

are the two points on line AB satisfying AQi/BQi = r for i = 1, 2.

5. Let ABCD be a convex quadrilateral. The four interior angle bisectors of ABCD are
concurrent and there exists a circle Γ tangent to the four sides of ABCD if and only if
AB + CD = AD +BC.

6. (Simson Line) Let M , N and P be the projections of a point Q onto the sides of a triangle
ABC. Then Q lies on the circumcircle of ABC if and only if M , N and P are collinear. If Q
lies on the circumcircle of ABC, then the reflections of Q in the sides of ABC are collinear
and pass through the orthocenter of the triangle.

7. (Broken Chord Theorem) Let E is the midpoint of major arc ÂBC of the circumcircle of a
triangle ABC where AB < BC. If D is the projection of E onto BC, then AB+BD = DC.

8. (Butterfly Theorem) Let M be the midpoint of a chord XY of a circle Γ. The chords AB
and CD pass through M . If AD and BC intersect chord XY at P and Q, then M is also
the midpoint of PQ.

9. (Miquel Point) Let D, E and F be points on sides BC, AC and AB of a triangle ABC. Then
the circumcircles of AEF , BDF and CDE are concurrent.
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10. (Isogonal Conjugates) Let ABC be a triangle and P be a point. If the reflection of BP in
the angle bisector of ∠ABC and the reflection of CP in the angle bisector ∠ACB intersect
at Q, then Q lies on the reflection of CP in the angle bisector of ∠ACB.

11. (Casey’s Theorem) Let O1, O2, O3, O4 be four circles tangent to a circle O. Let tij be the
length of the external common tangent between OiOj if Oi and Oj are tangent to O from the
same side and the length of the internal common tangent otherwise. Then

t12 · t34 + t41 · t23 = t13 · t24

The converse is also true: if the above equality holds then O1, O2, O3, O4 are tangent to O.

12. (Transversal Theorem) If A, B and C are collinear and A′, B′ and C ′ are points on AP,BP
and CP , then A′, B′ and C ′ are collinear if and only if

BC · AP
A′P

+ CA · BP
B′P

+AB · CP
C ′P

= 0

where all lengths are directed.

13. (Mixtilinear Incircles) Let ABC be a triangle with circumcircle Γ and let ω be a circle tangent
internally to Γ and to AB anc AC at X and Y . Then the incenter of ABC is the midpoint
of segment XY .

14. (Curvilinear Incircles) Let ABC be a triangle with circumcircle Γ and let D be a point on
segment BC. Let ω be a circle tangent to Γ, DA and DC. If ω is tangent to DA and DC at
F and E, then the incenter of ABC lies on FE.
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