Geometry Problems from the IMO Shortlist

Matthew Brennan
brennanm@mit.edu

1 Ideas to Try

Ideas to try on geometry problems:

1. Angle Chasing: Choose a set of angles that defines the diagram and find all possible angles in terms of them e.g. using cyclic quadrilaterals, similar triangles, common angle formulas.
2. Length Chasing: Find relationships between the lengths of sides e.g. using power of a point, similar triangles, Menelaus and Ceva, incircle and excircle side lengths, Pythagorean Theorem.
3. Reduce the Problem: Make some observations that reduce the problem to an easier problem or conjecture something plausible that implies the problem statement.
4. Phantom Points: To prove that a point P has a property, define a new point P^{\prime} in a way that is easier to work with, then prove the property for P^{\prime} and prove that $P=P^{\prime}$.
5. Combine Patterns: Bring parts of the diagram that are related to each other together e.g. through parallel lines, intersecting circumcircles, reflections, constructing similar triangles.
6. Spiral Similarity: Look for or construct similar triangles of the form $A O B$ and $C O D$ and use the angle and length relationships from the fact that $A O C$ and $B O D$ are also similar.
7. Transformations: Look for any transformations already present in the diagram and apply them to other parts of the diagram e.g. homothety, translation, reflection, spiral similarity.
8. Constructing Points: An introduced point P generally is useful if it has two "good" properties i.e. unites two conditions in the problem. Since a point P can always be selected to have a single property, introducing a point is only useful when it unites two conditions. However, most points introduced to solve problems are likely motivated by an approach listed above.
9. Forming Conjectures: Many difficult problems will require a lemma which may not be obvious from the problem statement or initial deductions. Two ways of forming conjectures are:
(a) looking for patterns in precisely drawn diagrams and
(b) thinking about what would be convenient and easy to work with if it were true

It is important to keep both of these ideas in mind when looking for a key observation. Observations made only from the diagram may not be feasible to prove, useless to the problem or false. Conjectures that would be convenient may be obviously disproved by a diagram. It is important to conjecture something which seems clearly true based on one good (or several) diagrams and is both feasible to prove and useful in the problem.
10. What is Difficult?: A diagram will likely have parts that are difficult and parts that are easier to work with. It is often useful to identify what parts are difficult to work with and try to figure out possible ways to handle them e.g. redefining points using phantom points.
11. Trigonometry: Powerful in situations when an angle cannot be expressed simply in terms of other angles e.g. angles involving medians; often works best when you have in mind exactly what you want to prove e.g. a ratio condition.
12. Algebraic Methods: Complex numbers, vectors, coordinates and barycentric coordinates.

2 Examples

The examples below are intended to be representative of the types of problems that might appear on the IMO. The solutions given are outlines intended to emphasize motivation. We do not deal with configuration issues and special cases in the solutions presented.

Example 1. (2004 G1) Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at M and N respectively. Denote by O the midpoint of the side $B C$. The bisectors of the angles $\angle B A C$ and $\angle M O N$ intersect at R. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the side $B C$.

Solution. The initial difficulty with this problem is that defining R as the intersection of two unrelated angle bisectors does not give much information. We search for a better way to describe R. Since O is the center of the circle through $B M N C$, it follows that $O M=O N$ and the bisector of $\angle M O N$ is the perpendicular bisector of $M N$. Now the bisector of $\angle B A C$ and perpendicular bisector of $B C$ meet at the midpoint of arc $\widehat{B C}$. Therefore $A M R N$ is cyclic. If the circumcircles meet at P, angle chasing gives that B, P and C are collinear.

The next example involves reducing the problem statement and parts of the diagram we need to consider as well as introducing phantom points.

Example 2. (1995 G1) Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. The line $X Y$ meets $B C$ at Z. Let P be a point on the line $X Y$ other than Z. The line $C P$ intersects the circle with diameter $A C$ at C and M, and the line $B P$ intersects the circle with diameter $B D$ at B and N. Prove that the lines $A M, D N, X Y$ are concurrent.

Solution. The diagram is cluttered and we try to reduce the parts of the diagrams we need to consider. The line $A M$ is simply the perpendicular to $C P$ at M and $D N$ is simply the perpendicular to $B P$ at N. We no longer have to think about A and D in defining these lines. Now we observe that since $Z P$ is perpendicular to $B C$, these lines create cyclic quadrilaterals. It seems natural to introduce their intersections with $Z P$. Let the perpendiculars at M and N to $C P$ and $B P$ intersect $Z P$ at Q and R. We now have that $Z X M C$ and $Z Y N B$ are cyclic. Power of a point yields that $P Q \cdot P Z=P M \cdot P C=P X \cdot P Y=P N \cdot P B=P R \cdot P Z$. Therefore $Q=R$ and we are done.

One important note with eliminating parts of the daigram is that you may lose information or those parts may motivate the solution. It is important to consider the problem both with and without unnecessary parts of the diagram. The next problem exemplifies the method of completing
a transformation already present in the diagram. In an trapezoid, there is an internal and an external homothety mapping the two parallel sides to one another. In this problem, we "complete" the transformation by filling in the missing point-transform pairs.

Example 3. (2006 G2) Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $\frac{A K}{K B}=\frac{D L}{L C}$. Suppose that there are points P and Q on the line segment $K L$ satisfying $\angle A P B=\angle B C D$ and $\angle C Q D=\angle A B C$. Prove that the points P, Q, B and C are concyclic.

Solution. Since $A B C D$ is a trapezoid, there is a homothety sending $A B$ to $C D$ as well as one sending $A B$ to $D C$. We note that the homothety sending $A B$ to $D C$ also sends K to L. Now we complete this homothety in the diagram. Let $D A$ and $C B$ intersect at T and let the homothety with center T bring P to P^{\prime}. We have that K, P, Q, L and P^{\prime} are collinear and $P B \| P^{\prime} C$. Since $\angle D Q C+\angle A P B=\angle D Q C+\angle D P^{\prime} C=180^{\circ}$, we have $D Q C P^{\prime}$ is cyclic. Therefore $\angle Q P B=$ $\angle Q P^{\prime} C=\angle Q D C=180^{\circ}-\angle D Q C-\angle Q C D=\angle Q C B$. The conclusion follows.

The next problem really illustrates the power of looking for similar triangles and stopping to think about what is already in the diagram before trying to introduce new points.

Example 4. (2005 G3) Let $A B C D$ be a parallelogram. A variable line g through the vertex A intersects the rays $B C$ and $D C$ at the points X and Y, respectively. Let K and L be the A excenters of the triangles $A B X$ and $A D Y$. Show that $\angle K C L$ is independent of the line g.

Solution. Angle chasing gives that $\angle A L D=\angle K A B=\angle B A X / 2$ and $\angle D A L=\angle B K A=$ $\angle A D Y / 2$. Therefore triangles $A D L$ and $K B A$ are similar which implies that $A B / B K=D L / A D$ and therefore $D L / C D=B C / B K$. Since $\angle C D L=\angle C B K=90^{\circ}-\angle A D C / 2$, it follows that triangles $C D L$ and $K B C$ are siimilar. Now it follows that $\angle K C L=360^{\circ}-\angle B C D-\angle D C L-\angle B C K=$ $180^{\circ}+\angle C D L-\angle B C D=180^{\circ}-\angle B C D / 2$ which is independent of g.

The next example illustrates the power of redefining a point that is difficult to work with. Here, working with the problem defined from an easier point of view reduces it to angle chasing.

Example 5. (2002 G3) The circle S has centre O, and $B C$ is a diameter of S. Let A be a point of S such that $\angle A O B<120^{\circ}$. Let D be the midpoint of the arc $A B$ which does not contain C. The line through O parallel to $D A$ meets the line $A C$ at I. The perpendicular bisector of $O A$ meets S at E and at F. Prove that I is the incentre of the triangle CEF.

Solution. We first make several preliminary observations. Since $E F$ is the perpendicular bisector of $O A$, we have that $A E=O E=O A$ and therefore $A O E$ is equilateral. Similarly, we have that $A O F$ is equilateral which implies that $\angle E O F=120^{\circ}$ and $\angle E C F=60^{\circ}$. These results also imply that A is the midpoint of arc $\overline{E F}$ and $C A$ bisects $\angle E C F$. After these preliminary observations, it becomes difficult to work with the point I as defined. The key here is to redefine I to be easier to work with. We now define I^{\prime} to be the incenter of $C E F$ with the goal of showing that $\angle D A O=\angle A O I^{\prime}$ since this would imply that $O I^{\prime} \| A D$ and therefore $I=I^{\prime}$. At this point, the task becomes far more feasible than before and reduces to angle chasing. First we note that $\angle E O F=120^{\circ}$ and $\angle E I^{\prime} F=90^{\circ}+\angle E C F / 2=120^{\circ}$ which implies that $E I^{\prime} O F$ is cyclic. Now we carry out our angle chasing methodically, attempting to eliminate points from consideration as we go. Note that $\angle D A O=90^{\circ}-\angle A O D / 2=90^{\circ}-\angle A C B / 2=45^{\circ}+\angle A B C / 2=45^{\circ}+\angle A F C / 2$, which is enough to eliminate D and B. Now note that $\angle A O I^{\prime}=\angle A O E+\angle E O I^{\prime}=60^{\circ}+\angle E F I=60^{\circ}+\angle E F C / 2$. Since $\angle A F C-\angle E F C=30^{\circ}$, we have that $\angle D A O=\angle A O I^{\prime}$, as desired.

The next example has multiple elements that are difficult to work with. Here, we follow cues presented in the diagram and obtain useful constructions (introduced points uniting more than one condition) and reduce the problem to feasible ratio calculations.
Example 6. (1996 G3) Let O be the circumcenter and H the orthocenter of an acute-angled triangle $A B C$ such that $B C>C A$. Let F be the foot of the altitude $C H$ of triangle $A B C$. The perpendicular to the line $O F$ at the point F intersects the line $A C$ at P. Prove that $\angle F H P=\angle B A C$.

Solution. If the problem statement is true, then $\angle C H P=180^{\circ}-\angle B A C$. Based on this angle relationship, intersecting $H P$ with $A B$ creates a cyclic quadrilateral. We reformulate the problem by defining P as the point on $A C$ satisfying $\angle F H P=\angle B A C$ introduce this intersection point and call it D. Our goal is now to show $\angle P F O=90^{\circ}$ and the two definitions are therefore equivalent. Since $C H A D$ is cyclic, we have that $\angle C D A=180^{\circ}-\angle C H A=\angle C B A$. Since the line $O F$ is difficult to deal with and angles around it have no simple formula, we try to reduce the problem to a condition relating something more directly related to P than $O F$. We have now that $D C B$ is isosceles and F is the midpoint of $B D$. If M is the midpoint of $A B$, then we now note that there is a homothety sending $M F$ to $A D$ with center B and ratio 2. Let E be the image of O under this homothety. Note that $A E=2 O M=C H$. It now suffices to show that $\angle E D A=90^{\circ}-\angle P F H$. We now try to reduce this angle condition to length conditions which will be easier to deal with since many angles in the diagram cannot be expressed simply. If G is the intersection of $F P$ with the line through C perpendicular to $C H$. Since $\angle G C F=\angle E A D=90^{\circ}$, it suffices to show that $G C F$ and $E A D$ are similar, which is equivalent to showing that

$$
\frac{C H}{A D}=\frac{E A}{A D}=\frac{G C}{C F}=\frac{C P}{P A} \cdot \frac{A F}{C F}
$$

Now we resort to a ratio identity for cyclic quadrilaterals. The ratio $C P / P A$ is the ratio of the areas of triangles $D C H$ and $D A H$. Therefore since $C H A D$ is cyclic, we have that

$$
\frac{C P}{P A}=\frac{\sin \angle D C H \cdot C D \cdot C H}{\sin \angle D A H \cdot A D \cdot A H}=\frac{C B \cdot C H}{A D \cdot A H}
$$

Therefore the desired result reduces to proving that $A H / A F=B C / C F$ which follows from the fact that $A H F$ and $C B F$ are similar. This completes the proof.

The next example demonstrates the effectiveness of persisting with a particular approach before moving on and introducing new points into the diagram.

Example 7. (2008 G4) In an acute triangle $A B C$ segments $B E$ and $C F$ are altitudes. Two circles passing through the point A anf F and tangent to the line $B C$ at the points P and Q so that B lies between C and Q. Prove that lines $P E$ and $Q F$ intersect on the circumcircle of triangle $A E F$.

Solution. This problem is straightforward with power of a point and does not require introducing any new points other than the orthocenter H of $A B C$ and foot of the perpendicular from A to $B C$, which are already implicitly present. Relating our goal to angles already in the diagram reduces the problem to showing that $\angle Q F B=\angle P E C$. By power of a point $B Q^{2}=B P^{2}=B F \cdot B A$ and triangles $Q F B$ and $A Q B$ are similar. Therefore it suffices to show that $\angle P E C=\angle A Q C$ which is equivalent to $A Q P E$ being cyclic. By power of a point we now have

$$
C P \cdot C Q=B C^{2}-B P^{2}=B C^{2}-B F \cdot B A=B C^{2}-B D \cdot B C=C D \cdot C B=C E \cdot C A
$$

Therefore $A Q P E$ is cyclic and we are done.

This solution hides the experimenting involved with power of a point needed to come up with it. Although it is tempting to try introducing new points, here just persisting with what is already present solves the problem. The key idea in the next example is to find an easier condition to work with and to combine related ideas.

Example 8. (2006 G4) Let $A B C$ be a triangle such that $\widehat{A C B}<\widehat{B A C}<\frac{\pi}{2}$. Let D be a point of $[A C]$ such that $B D=B A$. The incircle of $A B C$ touches $[A B]$ at K and $[A C]$ at L. Let J be the center of the incircle of $B C D$. Prove that $(K L)$ intersects $[A J]$ at its middle.

Solution. Angle chasing gives that $\angle A L K=90^{\circ}-\angle A / 2$ and $\angle C D J=90^{\circ}-\angle A / 2$. It makes sense to try to relate these two equal angles in the diagram by trying to move one into a position so that it relates to the other. Furthermore, working on the segment $A J$ seems difficult as we do not know angles or lengths related to this line. Instead, we try to work on $A C$, where we can make use of incircle tangent length formulas. We do this by reducing the problem using nonperpendicular projections in the direction of $K L$ onto $A C$. We find that this reduces the problem to a seemingly feasible alternative and also relates the equal angles originally found. Specifically, let P be the intersection of the line perpendicular to $K L$ through J with $A C$. It now suffices to show that L is the midpoint of $A P$. Since $\angle P D J=\angle A L K=\angle D P J$, we have that $P D J$ is isosceles and if M is the midpoint of $D P$, then M is also the foot of the perpendicular from J onto $A C$. Applying incircle tangent length formulas gives that $A L=\frac{1}{2}(A B+A C-B C)$ and $A P=A D+2 A M=A D+(B D+D C-B C)=A B+A C-B C$. This implies that L is the midpoint of $A P$ and the desired result follows.

The next example has a key lemma not at all obvious from the problem statement. We try to motivate how to find this observation.

Example 9. (2005 G5) Let $\triangle A B C$ be an acute-angled triangle with $A B \neq A C$. Let H be the orthocenter of triangle $A B C$, and let M be the midpoint of the side $B C$. Let D be a point on the side $A B$ and E a point on the side $A C$ such that $A E=A D$ and the points D, H, E are on the same line. Prove that the line $H M$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle A B C$ and triangle $\triangle A D E$.

Solution. It is a known fact that the line $H M$ passes through P, the point diametrically opposite to A on the circumcircle Γ of $A B C$. Based on this, it would be convenient if $H M$ passed through the second intersection Q of Γ and the circumcircle of $A D E$. If this were true, then $A Q$ and the line $\overline{P M H Q}$ would be perpendicular since $A P$ is a diameter of the circumcircle of $A B C$. At this point, it is not a bad idea to draw one or two precise diagrams and see if our claim is supported. We find that it is and decide to focus on this claim. Proving the claim directly does not seem easy since it is hard to work with the second intersection point while actually using the fact that it lies on both circles. We look for a conjecture easier to prove that arises from our claim. If the claim is true, then $\overline{P M H Q}$ must also pass through the point R diametrically opposite to A on the circumcircle of $A D E$. Proving this seems more feasible, since it does not involve the second intersection and we work with it first. Treating this new claim as its own subproblem yields the following solution.

Let U and V be the feet of the perpendiculars from B and C to $A C$ and $A B$. Angle chasing yields that the line $\overline{D H E}$ is the internal bisector of the angle formed by lines $B U$ and $C V$. It also holds that triangles $U H C$ and $V H B$ are similar. Therefore $U D / D B=V E / E C=t$. If the perpendicular to $A B$ at D intersects $H P$ at R_{1}, then since $U H P B$ is a trapezoid it follows that
$H R_{1} / R_{1} P=t$. Similarly if the perpendicular to $A C$ at E intersects $H P$ at R_{2}, then $H R_{2} / R_{2} P=t$ and $R_{1}=R_{2}=R$. This proves the claim.

Now to complete the solution, take the projection Q^{\prime} of A onto line $\overline{P M H R}$. Since $A R$ and $A P$ are diameters of the circumcircle of $A D E$ and Γ, it follows that Q^{\prime} lies on both circles and thus $Q^{\prime}=Q$. Now it follows that the line $\overline{P M H R}$ is perpendicular to $A Q$, as desired.

3 Problems

In this section, a variety of IMO Shortlist problems are included. They are intended to be sorted roughly in increasing order of difficulty.

A1. (2003 G1) Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

A2. (2002 G1) Let B be a point on a circle S_{1}, and let A be a point distinct from B on the tangent at B to S_{1}. Let C be a point not on S_{1} such that the line segment $A C$ meets S_{1} at two distinct points. Let S_{2} be the circle touching $A C$ at C and touching S_{1} at a point D on the opposite side of $A C$ from B. Prove that the circumcentre of triangle $B C D$ lies on the circumcircle of triangle $A B C$.

A3. (1998 G1) A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of the sides $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that the quadrilateral $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.

A4. (2001 G1) Let A_{1} be the center of the square inscribed in acute triangle $A B C$ with two vertices of the square on side $B C$. Thus one of the two remaining vertices of the square is on side $A B$ and the other is on $A C$. Points B_{1}, C_{1} are defined in a similar way for inscribed squares with two vertices on sides $A C$ and $A B$, respectively. Prove that lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

A5. (2000 G1) Two circles G_{1} and G_{2} intersect at two points M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, so that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through the point M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

A6. (2003 G2) Given three fixed pairwisely distinct points A, B, C lying on one straight line in this order. Let G be a circle passing through A and C whose center does not lie on the line $A C$. The tangents to G at A and C intersect each other at a point P. The segment $P B$ meets the circle G at Q. Show that the point of intersection of the angle bisector of the angle $A Q C$ with the line $A C$ does not depend on the choice of the circle G.

A7. (2008 G1) Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $B C$ and passing through H intersects the sideline $B C$ at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1} and C_{2}. Prove that the six points A_{1}, A_{2}, B_{1}, B_{2}, C_{1} and C_{2} are concyclic.

A8. (2001 G2) Consider an acute-angled triangle $A B C$. Let P be the foot of the altitude of triangle $A B C$ issuing from the vertex A, and let O be the circumcenter of triangle $A B C$. Assume that $\angle C \geq \angle B+30^{\circ}$. Prove that $\angle A+\angle C O P<90^{\circ}$.

A9. (2005 G2) Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C, B_{1}, B_{2}$ on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.

B1. (2006 G3) Consider a convex pentagon $A B C D E$ such that

$$
\angle B A C=\angle C A D=\angle D A E \quad, \quad \angle A B C=\angle A C D=\angle A D E
$$

Let P be the point of intersection of the lines $B D$ and $C E$. Prove that the line $A P$ passes through the midpoint of the side $C D$.

B2. (2009 G2) Let $A B C$ be a triangle with circumcentre O. The points P and Q are interior points of the sides $C A$ and $A B$ respectively. Let K, L and M be the midpoints of the segments $B P, C Q$ and $P Q$. respectively, and let Γ be the circle passing through K, L and M. Suppose that the line $P Q$ is tangent to the circle Γ. Prove that $O P=O Q$.

B3. (2012 G3) In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.

B4. (2007 G3) The diagonals of a trapezoid $A B C D$ intersect at point P. Point Q lies between the parallel lines $B C$ and $A D$ such that $\angle A Q D=\angle C Q B$, and line $C D$ separates points P and Q. Prove that $\angle B Q P=\angle D A Q$.

B5. (2000 G3) Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C, C A$, and $A B$ respectively such that

$$
O D+D H=O E+E H=O F+F H
$$

and the lines $A D, B E$, and $C F$ are concurrent.
B6. (2009 G4) Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G and H.

B7. (1998 G6) Let $A B C D E F$ be a convex hexagon such that $\angle B+\angle D+\angle F=360^{\circ}$ and

$$
\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1 .
$$

Prove that

$$
\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=1 .
$$

B8. (2009 G3) Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelogram. Prove that $G R=G S$.

B9. (2003 G5) Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

B10. (2005 G4) Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel with $D A$. Let two variable points E and F lie of the sides $B C$ and $D A$, respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.

B11. (1995 G8) Suppose that $A B C D$ is a cyclic quadrilateral. Let $E=A C \cap B D$ and $F=A B \cap C D$. Denote by H_{1} and H_{2} the orthocenters of triangles $E A D$ and $E B C$, respectively. Prove that the points F, H_{1}, H_{2} are collinear.

B12. (2007 G4) Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.

B13. (2011 G4) Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G and X are collinear.

B14. (2010 G5) Let $A B C D E$ be a convex pentagon such that $B C \| A E, A B=B C+A E$, and $\angle A B C=\angle C D E$. Let M be the midpoint of $C E$, and let O be the circumcenter of triangle $B C D$. Given that $\angle D M O=90^{\circ}$, prove that $2 \angle B D A=\angle C D E$.

C1. (1998 G5) Let $A B C$ be a triangle, H its orthocenter, O its circumcenter, and R its circumradius. Let D be the reflection of the point A across the line $B C$, let E be the reflection of the point B across the line $C A$, and let F be the reflection of the point C across the line $A B$. Prove that the points D, E and F are collinear if and only if $O H=2 R$.

C2. (1998 G8) Let $A B C$ be a triangle such that $\angle A=90^{\circ}$ and $\angle B<\angle C$. The tangent at A to the circumcircle ω of triangle $A B C$ meets the line $B C$ at D. Let E be the reflection of A in the line $B C$, let X be the foot of the perpendicular from A to $B E$, and let Y be the midpoint of the segment $A X$. Let the line $B Y$ intersect the circle ω again at Z. Prove that the line $B D$ is tangent to the circumcircle of triangle $A D Z$.

C3. (1999 G6) Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and $B . M A$ and $M B$ intersects Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.

C4. (2005 G6) Let $A B C$ be a triangle, and M the midpoint of its side $B C$. Let γ be the incircle of triangle $A B C$. The median $A M$ of triangle $A B C$ intersects the incircle γ at two points K and L. Let the lines passing through K and L, parallel to $B C$, intersect the incircle γ again in two points X and Y. Let the lines $A X$ and $A Y$ intersect $B C$ again at the points P and Q. Prove that $B P=C Q$.

C5. (2004 G7) For a given triangle $A B C$, let X be a variable point on the line $B C$ such that C lies between B and X and the incircles of the triangles $A B X$ and $A C X$ intersect at two distinct points P and Q. Prove that the line $P Q$ passes through a point independent of X.

C6. (2009 G6) Let the sides $A D$ and $B C$ of the quadrilateral $A B C D$ (such that $A B$ is not parallel to $C D$) intersect at point P. Points O_{1} and O_{2} are circumcenters and points H_{1} and H_{2} are orthocenters of triangles $A B P$ and $C D P$, respectively. Denote the midpoints of segments $O_{1} H_{1}$ and $O_{2} H_{2}$ by E_{1} and E_{2}, respectively. Prove that the perpendicular from E_{1} on $C D$, the perpendicular from E_{2} on $A B$ and the lines $H_{1} H_{2}$ are concurrent.

C7. (1996 G5) Let $A B C D E F$ be a convex hexagon such that $A B$ is parallel to $D E, B C$ is parallel to $E F$, and $C D$ is parallel to $F A$. Let R_{A}, R_{C}, R_{E} denote the circumradii of triangles $F A B, B C D, D E F$, respectively, and let P denote the perimeter of the hexagon. Prove that

$$
R_{A}+R_{C}+R_{E} \geq \frac{P}{2} .
$$

C8. (2011 G3) Let $A B C D$ be a convex quadrilateral whose sides $A D$ and $B C$ are not parallel. Suppose that the circles with diameters $A B$ and $C D$ meet at points E and F inside the quadrilateral. Let ω_{E} be the circle through the feet of the perpendiculars from E to the lines $A B, B C$ and $C D$. Let ω_{F} be the circle through the feet of the perpendiculars from F to the lines $C D, D A$ and $A B$. Prove that the midpoint of the segment $E F$ lies on the line through the two intersections of ω_{E} and ω_{F}.

C9. (2008 G7) Let $A B C D$ be a convex quadrilateral with $B A$ different from $B C$. Denote the incircles of triangles $A B C$ and $A D C$ by k_{1} and k_{2} respectively. Suppose that there exists a circle k tangent to ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to $A D$ and $C D$. Prove that the common external tangents to k_{1} and k_{2} intersect on k.

C10. (2006 G9) Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively ($A_{2} \neq A, B_{2} \neq B, C_{2} \neq C$). Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A$, $A B$ respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.

C11. (2012 G6) Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

C12. (2007 G8) Point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the incircle of triangle $C P D$, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles $A P D$ and $B P C$ at points K and L, respectively. Let lines $A C$ and $B D$ meet at E, and let lines $A K$ and $B L$ meet at F. Prove that points E, I, and F are collinear.

C13. (2009 G8) Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2} and I_{3} the incenters of $\triangle A B M, \triangle M N C$ and $\triangle N D A$, respectively. Prove that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.

C14. (2004 G8) Given a cyclic quadrilateral $A B C D$, let M be the midpoint of the side $C D$, and let N be a point on the circumcircle of triangle $A B M$. Assume that the point N is different from the point M and satisfies $\frac{A N}{B N}=\frac{A M}{B M}$. Prove that the points E, F, N are collinear, where $E=A C \cap B D$ and $F=B C \cap D A$.

4 Useful Geometry Facts

Cyclic Quadrilaterals

1. A convex quadrilateral $A B C D$ is cyclic if and only if either:
(a) $\angle A D B=\angle A C B$
(b) $\angle D A B+\angle B C D=180^{\circ}$
2. The above two conditions can be restated as a single condition in terms of directed angles: Four points A, B, C and D are concyclic if and only if $\measuredangle A B C=\measuredangle A D C$.
3. (Power of a Point) Let $A B C D$ be a convex quadrilateral such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at $Q . A B C D$ is cyclic if and only if either:
(a) $A Q \cdot Q C=B Q \cdot Q D$ or equivalently $Q A D$ and $Q B C$ are similar
(b) $P A \cdot P B=P C \cdot P D$ or equivalently $P A D$ and $P C B$ are similar
4. Given a triangle $A B C$, the intersections of the internal and external bisectors of angle $\angle B A C$ with the perpendicular bisector of $B C$ both lie on the circumcircle of $A B C$.
5. (Ptolemy's Theorem) A quadrilateral $A B C D$ is cyclic if and only if

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

6. Let $A B C D$ be a cyclic quadrilateral such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at Q. Then:

$$
\frac{B Q}{Q D}=\frac{A B \cdot B C}{A D \cdot D C} \quad \text { and } \quad \frac{P B}{P A}=\frac{B C \cdot B D}{A C \cdot A D}
$$

7. (Polars) Let $A B C D$ be a cyclic quadrilateral inscribed in circle Γ such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at Q. If the tangents drawn from P to Γ touch Γ at R and S, then R, Q and S are collinear.

Circles

1. (Power of a Point) Given a circle Γ with center O and a point P then for any line ℓ through P that intersects Γ at A and B, the value $P A \cdot P B$ is constant as ℓ varies and is equal to the power of the point P with respect to Γ.
(a) The power of P is equal to $r^{2}-P O^{2}$ if P is inside Γ and $P O^{2}-r^{2}$ otherwise.
(b) If $P A$ is tangent to Γ, then the power of P is equal to $P A^{2}$.
2. (Radical Axis) Given two circles Γ_{1} and Γ_{2}, the set of all points P with equal powers with respect to Γ_{1} and Γ_{2} is a line which is the radical axis of the two circles.
(a) The radical axis is perpendicular to the line through the centers of Γ_{1} and Γ_{2}.
(b) If Γ_{1} and Γ_{2} intersect at A and B, then the radical axis passes through A and B.
(c) If $A B$ is a common tangent with A on Γ_{1} and B on Γ_{2}, then the radical axis passes through the midpoint of $A B$.
3. (Radical Center) Given three circles Γ_{1}, Γ_{2} and Γ_{3}, the three radical axes between pairs of the three circles meet at a common point P which is the radical center of the circles.
4. A point P is a circle of radius zero and the radical axis of P and a circle Γ is the line through the midpoints of $P A$ and $P B$ where A and B are points on Γ such that $P A$ and $P B$ are tangent to Γ.
5. (Monge's Theorem) Given three circles Γ_{1}, Γ_{2} and Γ_{3}. If P, Q and R are the external centers of homothety between pairs of the three circles, then P, Q and R are collinear. If P and Q are internal centers of homothety, then P, Q and R are also collinear.
6. Two circles Γ_{1} and Γ_{2} intersect at R and have centers O_{1} and O_{2}. If P and Q are the internal and external centers of homothety between the two circles, then $\angle P R Q=90^{\circ}$. The lines $R P$ and $R Q$ are the internal and external bisectors of $\angle O_{1} R O_{2}$.

Triangle Geometry

1. (Angle Bisector Theorem) Let $A B C$ be a given triangle and let P and Q be the intersections of the internal and external bisectors of angle $\angle A B C$ with line $A C$. Then

$$
\frac{A B}{B C}=\frac{A P}{P C}=\frac{A Q}{Q C}
$$

2. Angles around the centers of a triangle $A B C$:
(a) If I is the incenter of $A B C$ then $\angle B I C=90^{\circ}+\frac{a}{2}, \angle I B C=\frac{b}{2}$ and $\angle I C B=\frac{c}{2}$.
(b) If H is the orthocenter of $A B C$ then $\angle B H C=180^{\circ}-a, \angle H B C=90^{\circ}-c$ and $\angle H C B=$ $90^{\circ}-b$.
(c) If O is the circumcenter of $A B C$ then $\angle B O C=2 a$ and $\angle O B C=\angle O C B=90^{\circ}-a$.
(d) If I_{a} is the A-excenter of $A B C$ then $\angle A I_{a} B=\frac{c}{2}, \angle A I_{a} C=\frac{b}{2}$ and $\angle B I_{a} C=90^{\circ}-\frac{a}{2}$.
3. Pedal triangles of the centers of a triangle $A B C$:
(a) If $D E F$ is the triangle formed by projecting the incenter I onto sides $B C, A C$ and $A B$, then I is the circumcenter of $D E F$ and $\angle E D F=90^{\circ}-\frac{a}{2}$.
(b) If $D E F$ is the triangle formed by projecting the orthocenter H onto sides $B C, A C$ and $A B$, then H is the incenter of $D E F$ and $\angle E D F=180^{\circ}-2 a$.
(c) The medial triangle of $A B C$ is the pedal triangle of the circumcenter O of $A B C$ and O is its orthocenter.
4. Alternate methods of defining the orthocenter and circumcenter:
(a) O is the circumcenter of $A B C$ if and only if $\measuredangle A O B=2 \measuredangle A C B$ and $O A=O B$.
(b) H is the orthocenter of $A B C$ if and only if H lies on the altitude from A and satisfies that $\measuredangle B H C=180^{\circ}-\measuredangle B A C$.
5. Facts related to the orthocenter H of a triangle $A B C$ with circumcircle Γ :
(a) If O is the circumcenter of $A B C$, then $\angle B A H=\angle C A O$.
(b) If D is the point diametrically opposite to A on Γ and M is the midpoint of $B C$, then M is also the midpoint of $H D$.
(c) If $A H, B H$ and $C H$ intersect Γ again at D, E and F, then there is a homothety centered at H sending the pedal triangle of H to $D E F$ with ratio 2 .
(d) If D and E are the intersections of $A H$ with $B C$ and Γ, respectively, then D is the midpoint of $H E$.
(e) H lies on the three circles formed by reflecting Γ about $A B, B C$ and $A C$.
(f) If M is the midpoint of $B C$ then $A H=2 \cdot O M$.
(g) If $B H$ and $C H$ intersect $A C$ and $A B$ at D and E, and M is the midpoint of $B C$, then M is the center of the circle through B, D, E and C, and $M D$ and $M E$ are tangent to the circumcircle of $A D E$.
6. Facts related to the incenter I and excenters I_{a}, I_{b}, I_{c} of $A B C$ with circumcircle Γ :
(a) If the incircle of $A B C$ is tangent to $A B$ and $A C$ at points D and E and s is the semiperimeter of $A B C$ then

$$
A D=A E=\frac{A B+A C-B C}{2}=s-B C
$$

(b) If $A I$ intersects Γ at D then $D B=D I=D C, D$ is the midpoint of $I I_{a}$, and $I I_{a}$ is a diameter of the circle with center D which passes through B and C.
(c) If $A I, B I$ and $C I$ intersect Γ at D, E and F, then $I_{a} I_{b} I_{c}, D E F$ and the pedal triangle of I are similar and have parallel sides.
(d) I is the orthocenter of $I_{a} I_{b} I_{c}$ and Γ is the nine-point circle of $I_{a} I_{b} I_{c}$.
(e) If $B I$ and $C I$ intersect Γ again at D and E, then I is the reflection of A in line $D E$ and if M is the intersection of the external bisector of $\angle B A C$ with Γ, then $D M E I$ is a parallelogram.
(f) If the incircle and A-excircle of $A B C$ are tangent to $B C$ at D and $E, B D=C E$.
(g) If the A-excircle of $A B C$ is tangent to $A B, A C$ and $B C$ at D, E and F then $A B+B F=$ $A C+C F=A D=A E=s$ where s is the semi-perimeter of $A B C$.
(h) If M is the midpoint of $\operatorname{arc} B A C$ of Γ, then M is the midpoint of $I_{b} I_{c}$ and the center of the circle through I_{b}, I_{c}, B and C.
7. (Nine-Point Circle) Given a triangle $A B C$, let Γ denote the circle passing through the midpoints of the sides of $A B C$. If H is the orthocenter of $A B C$, then Γ passes through the midpoints of $A H, B H$ and $C H$ and the projections of H onto the sides of $A B C$.
8. (Feuerbach's Theorem) The nine-point circle is tangent to the incircle and excircles.
9. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle $A B C$, then G lies on segment $O H$ with $H G=2 \cdot O G$.
10. (Symmedian) Given a triangle $A B C$ such that M is the midpoint of $B C$, the symmedian from A is the line that is the reflection of $A M$ in the bisector of angle $\angle B A C$.
(a) If the tangents to the circumcircle Γ of $A B C$ at B and C intersect at N, then N lies on the symmedian from A and $\angle B A M=\angle C A N$.
(b) If the symmedian from A intersects Γ at D, then $A B / B D=A C / C D$.
11. If the median from A in a triangle $A B C$ intersects the circumcircle Γ of $A B C$ at D, then $A B \cdot B D=A C \cdot C D$.
12. (Euler's Formula) Let O, I and I_{a} be the circumcenter, incenter and A-excenter of a triangle $A B C$ with circumradius R, inradius r and A-exradius r_{a}. Then:
(a) $O I=\sqrt{R(R-2 r)}$.
(b) $O I_{a}=\sqrt{R\left(R+2 r_{a}\right)}$.
13. (Poncelet's Porism) Let Γ and ω be two circles with centers O and I and radii R and r, respectively, such that $O I=\sqrt{R(R-2 r)}$. Let A, B and C be any three points on Γ such that lines $A B$ and $A C$ are tangent to ω. Then line $B C$ is also tangent to ω.
14. (Apollonius Circle) Let $A B C$ be a given triangle and let P be a point such that $A B / B C=$ $A P / P C$. If the internal and external bisectors of angle $\angle A B C$ meet line $A C$ at Q and R, then P lies on the circle with diameter $Q R$.
15. Let $A B C$ be a given triangle with incircle ω and A-excircle ω_{a}. If ω and ω_{a} are tangent to $B C$ at M and N, then $A N$ passes through the point diametrically opposite to M on ω and $A M$ passes through the point diametrically opposite to N on ω_{a}.
16. Let $A B C$ be a triangle with incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. Let M be the midpoint of $B C$. The perpendicular to $B C$ at D, the median $A M$ and the line $E F$ are concurrent.
17. Let $A B C$ be a triangle with incenter I and incircle ω which is tangent to $B C, A C$ and $A B$ at D, E and F. The angle bisector $C I$ intersects $F E$ at a point T on the line adjoining the midpoints of $A B$ and $B C$. It also holds that $B F T I D$ is cyclic and $\angle B T C=90^{\circ}$.

Collinearity and Concurrency

1. (Ceva's Theorem) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an even number are on the extensions of the sides (zero or two). Then $A D, B E$ and $C F$ are concurrent if and only if

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

2. (Menelaus' Theorem) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an odd number are on the extensions of the sides (one or three). Then D, E and F are collinear if and only if

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

3. (Trig Ceva) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an even number are on the extensions of the sides (zero or two). Then $A D, B E$ and $C F$ are concurrent if and only if

$$
\frac{\sin (\angle A B E)}{\sin (\angle C B E)} \cdot \frac{\sin (\angle B C F)}{\sin (\angle A C F)} \cdot \frac{\sin (\angle C A D)}{\sin (\angle B A D)}=1
$$

4. (Casey's Theorem) If A_{1}, B_{1} and C_{1} are points on the sides $B C, A C$ and $A B$ of a triangle $A B C$, then the perpendiculars to their respective sides at these three points are concurrent if and only if $B A_{1}^{2}-C A_{1}^{2}+C B_{1}^{2}-A B_{1}^{2}+A C_{1}^{2}-B C_{1}^{2}=0$.
5. (Pascal's Theorem) If A, B, C, D, E, F are points on a circle then the intersections of the pairs of lines $A B$ and $D E, B C$ and $E F, C D$ and $F A$ lie on a line.
6. (Pappus' Theorem) If A, C and E lie on one line ℓ_{1} and B, D and F lie on a line ℓ_{2}, then the intersections of the pairs of lines $A B$ and $D E, B C$ and $E F, C D$ and $F A$ lie on a line.
7. (Brianchon's Theorem) If $A B C D E F$ is a hexagon with an inscribed circle then $A D, B E$ and $C F$ are concurrent.
8. (Desargues Theorem) Let $A B C$ and $X Y Z$ be triangles. Let D, E, F be the intersections of the pairs of lines $A B$ and $X Y, B C$ and $Y Z, A C$ and $X Z$. Then D, E and F are collinear if and only if $A X, B Y$ and $C Z$ are concurrent.
9. Pascal's theorem is true when points are not necessarily distinct and many of its applications concern tangent lines when some of the six points are equal.

Trigonometry

1. (Sine Law) Given a triangle $A B C$ with circumradius R

$$
\frac{B C}{\sin \angle A}=\frac{A C}{\sin \angle B}=\frac{A B}{\sin \angle C}=2 R
$$

2. (Cosine Law) Given a triangle $A B C$

$$
B C^{2}=A B^{2}+A C^{2}-2 \cdot A B \cdot A C \cdot \cos \angle A
$$

3. (Pythagorean Theorem) If $A B C$ is a triangle, then $\angle A B C=90^{\circ}$ if and only if

$$
A B^{2}+B C^{2}=A C^{2}
$$

4. Given a triangle $A B C$ and a point D on line $B C$, then

$$
\frac{\sin \angle B A D}{\sin \angle C A D}=\frac{B D \cdot A C}{C D \cdot A B}
$$

5. (Stewart's Theorem) Let a, b, c be the side lengths of a triangle $A B C$ and let d be the length of a cevian from A to $B C$ that divides $B C$ into segments of lengths m and n with m closer to B. Then

$$
b^{2} m+c^{2} n=a\left(d^{2}+m n\right)
$$

Miscellaneous Synthetic Facts

1. (Spiral Similarity) Let $O A B$ and $O C D$ be directly similar triangles. Then $O A C$ and $O B D$ are also directly similar triangles.
2. The unique center of spiral similarity sending $A B$ to $C D$ is the second intersection of the circumcircles of $Q A B$ and $Q C D$ where $A C$ and $B D$ intersect at Q.
3. Lines $A B$ and $C D$ are perpendicular if and only if $A C^{2}-A D^{2}=B C^{2}-B D^{2}$.
4. (Apollonius Circle) Given two points A and B and a fixed $r>0$, then the locus of points Q such that $A Q / B Q=r$ is a circle Γ with center at the midpoint of $Q_{1} Q_{2}$ where Q_{1} and Q_{2} are the two points on line $A B$ satisfying $A Q_{i} / B Q_{i}=r$ for $i=1,2$.
5. Let $A B C D$ be a convex quadrilateral. The four interior angle bisectors of $A B C D$ are concurrent and there exists a circle Γ tangent to the four sides of $A B C D$ if and only if $A B+C D=A D+B C$.
6. (Simson Line) Let M, N and P be the projections of a point Q onto the sides of a triangle $A B C$. Then Q lies on the circumcircle of $A B C$ if and only if M, N and P are collinear. If Q lies on the circumcircle of $A B C$, then the reflections of Q in the sides of $A B C$ are collinear and pass through the orthocenter of the triangle.
7. (Broken Chord Theorem) Let E is the midpoint of major arc $\widehat{A B C}$ of the circumcircle of a triangle $A B C$ where $A B<B C$. If D is the projection of E onto $B C$, then $A B+B D=D C$.
8. (Butterfly Theorem) Let M be the midpoint of a chord $X Y$ of a circle Γ. The chords $A B$ and $C D$ pass through M. If $A D$ and $B C$ intersect chord $X Y$ at P and Q, then M is also the midpoint of $P Q$.
9. (Miquel Point) Let D, E and F be points on sides $B C, A C$ and $A B$ of a triangle $A B C$. Then the circumcircles of $A E F, B D F$ and $C D E$ are concurrent.
10. (Isogonal Conjugates) Let $A B C$ be a triangle and P be a point. If the reflection of $B P$ in the angle bisector of $\angle A B C$ and the reflection of $C P$ in the angle bisector $\angle A C B$ intersect at Q, then Q lies on the reflection of $C P$ in the angle bisector of $\angle A C B$.
11. (Casey's Theorem) Let $O_{1}, O_{2}, O_{3}, O_{4}$ be four circles tangent to a circle O. Let $t_{i j}$ be the length of the external common tangent between $O_{i} O_{j}$ if O_{i} and O_{j} are tangent to O from the same side and the length of the internal common tangent otherwise. Then

$$
t_{12} \cdot t_{34}+t_{41} \cdot t_{23}=t_{13} \cdot t_{24}
$$

The converse is also true: if the above equality holds then $O_{1}, O_{2}, O_{3}, O_{4}$ are tangent to O.
12. (Transversal Theorem) If A, B and C are collinear and A^{\prime}, B^{\prime} and C^{\prime} are points on $A P, B P$ and $C P$, then A^{\prime}, B^{\prime} and C^{\prime} are collinear if and only if

$$
B C \cdot \frac{A P}{A^{\prime} P}+C A \cdot \frac{B P}{B^{\prime} P}+A B \cdot \frac{C P}{C^{\prime} P}=0
$$

where all lengths are directed.
13. (Mixtilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let ω be a circle tangent internally to Γ and to $A B$ anc $A C$ at X and Y. Then the incenter of $A B C$ is the midpoint of segment $X Y$.
14. (Curvilinear Incircles) Let $A B C$ be a triangle with circumcircle Γ and let D be a point on segment $B C$. Let ω be a circle tangent to $\Gamma, D A$ and $D C$. If ω is tangent to $D A$ and $D C$ at F and E, then the incenter of $A B C$ lies on $F E$.

